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Abstract This study proposes a one-dimensional constitutive model for elastomeric mate-
rials based on recent observations regarding the separation of elastic and viscous contribu-
tions in uniaxial cyclic tensile experiments on EPDM rubber. The focus is on capturing the
changes in constitutive behavior and energy dissipation associated with the Mullins effect.
In the model, this is achieved through the evolution of both permanent set and hyperelas-
tic parameters of an Edwards-Vilgis function to account for the Mullins effect, and with a
viscosity associated with the effective stretch rate of the network to describe the non-linear
flow stress. The simulations are able to reproduce the observed constitutive response and its
change with increasing levels of pre-deformation. The model is less able to accurately re-
produce the virgin loading response, which is achieved via extrapolation to zero pre-strain.
However, for practical purposes, where scragging of elastomeric products is the norm, the
model is able to predict the cyclic response and the dissipated energy, and their change with
different scragging levels in good agreement with experimental data.

Keywords Constitutive model · Mullins effect · EPDM rubber

1 Introduction

Elastomers are essential to a wide range of industrial applications, including tyres, dampers
and seals to name a few. Constitutive models are a critical element in the design process to
enable simulation of the in-service behavior of these products during their life cycle. Owing
to stress softening, permanent set and viscoelasticity, amongst others, these materials exhibit
a complex mechanical response. Furthermore, there is still much debate in the academic lit-
erature regarding the physical origins of several aspects of the underlying material behavior.
A combination of the two factors described above has resulted in numerous modeling ap-
proaches being suggested by the research community.
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A significant stress softening is noted for rubber-like materials after an initial loading.
This phenomenon is referred to as the Mullins effect (Mullins 1948; Mullins and Tobin
1965, 1957), and remains a major hurdle in the formulation of constitutive models, with the
majority of rubber models still limited to behavior following a single prescribed precondi-
tioning history. Several authors have attributed this phenomenon to bond rupture (Clough
et al. 2016), molecular slippage (Houwink 1956), filler rupture (Kraus et al. 1966), molecu-
lar disentanglement (Hanson et al. 2005) and multiple networks (Fukahori 2005), although
the cause of this phenomenon is still the subject of on-going research. Nevertheless, there
are a limited number of physically motivated and phenomenological constitutive models that
address the Mullins effect.

Marckmann et al. (2002) implemented a network alteration model, which considers the
rupture of filler-matrix and polymer chain bonds (i.e. weak interactions and cross-links). As
the bonds break, the average number of monomer segments N in a polymer chain increases.
The parameter N is described by a linear function of the maximum pre-deformation seen
by the network and is determined empirically. As N increases, the average number of active
chains per unit volume n decreases, causing a softening of the network.

Mullins and Tobin (1957) suggested a two-phase model; the soft phase is the rubber
matrix and the hard phase is the filler. The hard phase is initially surrounded by bound
rubber from the soft phase, immobilized by means of entanglements and intermolecular
forces. The softening effect arises from the release of bound rubber into the soft phase as
a result of deformation and causes an increase in the effective volume of the soft phase.
Models of this type were later implemented by Qi and Boyce (2004), and by Fernandes
(2016). The former fits the initial and final volume fractions via optimization with respect to
experimental data, whereas in the latter the effective volume of the soft phase was obtained
by thermogravimetric analysis and swelling experiments.

Phenomenological descriptions of the Mullins phenomenon are broadly based on a con-
cept introduced by Simo (1987), where strain energy density functions used to describe
hyperelastic materials are multiplied by a reducing parameter. These models differ from
each other in their definition of the damage variable, and they have been comprehensively
reviewed by Diani et al. (2009).

Alongside stress softening, deformed elastomers exhibit a residual strain (or permanent
set) on load removal. Simo’s theory (Simo 1987) can be extended to account for permanent
set by incorporating additional reducing parameters. An approach of this type has been fol-
lowed by Dorfmann and Ogden (2004), and by Peña (2014). Maher et al. (2012) suggested
an alternative approach, where an additive split of the stress tensor is used to capture the
permanent set such that a negative stress is observed at a strain of zero; this is analogous to
having a residual strain at a zero stress.

This paper presents a newly developed constitutive model whose parameter evolution
leads to a Mullins effect and permanent set. This model is inspired by a recent study by
De Focatiis et al. (2009) involving cyclic tests following various levels of pre-deformation
where the elastic and viscous contributions were extracted from the stress-stretch response.
By isolating the elastic response, they demonstrated that the parameters of an Edwards-
Vilgis (E-V) strain energy function (Edwards and Vilgis 1986) fitted to the elastic con-
tribution evolve with pre-deformation. Once permanent set was accounted for, the viscos-
ity obtained from the isolated viscous contribution was shown to be independent of pre-
deformation and a unique function of network stretch. Although non-linear viscosities have
been incorporated in previous constitutive models, to the best of the authors’ knowledge,
none have been linked to strain in elastomers.

This paper formulates a one-dimensional (1D) constitutive model based on the ideas of
an evolving hyperelastic component and a non-linear viscoelastic Maxwell element. It then
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explores the extent to which such a model can capture the observed cyclic response and
the dissipated energy of an EPDM rubber deformed in a series of complex strain histories.
Although the implementation is currently only one-dimensional, the process of extending
the model to 3D is discussed.

2 Materials and methods

The experimental data employed in this study have been described previously (De Focatiis
et al. 2009), and only a brief overview of the experimental procedure is given here.

2.1 Materials and manufacturing

A carbon-black filled (50 phr) EPDM rubber was compression molded for 13 minutes at
160 ◦C into approximately 0.5 mm thick sheets. Uniaxial tensile test specimens were cut
from the sheet using a hand operated Wallace specimen cutting press fitted with a dumbbell
shaped cutter 1BA according to BS ISO 527-2.

2.2 Mechanical testing

Uniaxial tensile cyclic tests were performed on an Instron 4204 tensile testing machine fitted
with a counterbalanced traveling extensometer to record the strain at a constant nominal
strain rate of 0.03 s−1 at room temperature, (24 ± 1) ◦C. The specimens were subjected to
four load-unload cycles through to a specified pre-deformation λmax, as illustrated in the
inset of Fig. 1, and ten separate λmax increments between 1 and 6 inclusive were explored.
To prevent buckling, the specimens were always unloaded to a stretch λ(0.1N) corresponding
to a small tensile force of 0.1 N.

Representative stress-stretch responses to the cyclic loading are illustrated in Fig. 1.
Many of the characteristic features of the deformation of filled elastomers can be observed,
including stress softening, permanent set and hysteresis. The stress softening and permanent
set increase with increasing stretch λ.

3 Experimental analysis

3.1 Extraction of the elastic and viscous contributions

Decompositions into elastic and viscous contributions are commonly used in constitutive
models describing elastomers and polymers, as first suggested by Haward and Thackray
(1968), and as implemented by Bergström and Boyce (1998), and several others. In this
study, it is assumed that the changes to the constitutive behavior of the rubber due to the
Mullins effect arise as a result of the maximum level of deformation experienced, and hence
simply depend on λmax. As subsequent unloading-reloading loops are similar (see Fig. 1),
any unloading-reloading loops following λmax can be used in the decoupling of the me-
chanical response. The third unload-reload loop has been chosen in this instance since the
constitutive response shows the most dramatic change in the first few cycles.

The assumption is that the steady-state response at a given strain level can be decomposed
as the sum of an elastic (equilibrium) σe and a dissipative, or viscous σv stress. σv changes
sign depending on the sign of the strain rate, positive on loading and negative on unloading.
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Fig. 1 The stress-stretch
response of selected EPDM
specimens subjected to cyclic
loading as shown in the inset to
maximum stretches λmax of 2, 3,
4, 5 and 6. The specimens are
unloaded to a stretch
corresponding to a load of 0.1 N(
λ(0.1N)

)
to prevent buckling.

A virgin specimen was used for
each test

Fig. 2 The experimental
stress-stretch response (symbols)
to cyclic tension to a maximum
stretch λmax of 3, showing only
the pre-deformation and the third
unload-reload loop. The elastic
response σe (dashed line) and
viscous response σv (dot-dash
line) are obtained from the mean
and from half of the difference
between the third loop unloading
and reloading stress, respectively.
The transient portion of the data
(here indicated as a strain of 0.33
at each end of the deformation)
and the data used in the
procedure are highlighted

Following the ideas proposed by De Focatiis et al. (2009) and Prisacariu et al. (2005), σe

and σv are computed from the experimental measurements as the mean and as half of the
difference between the loading and the unloading stress, respectively. Here, to ensure that
the viscoelastic transients have saturated, the initial and final 0.33 strains of each cycle are
discarded. The elastic and viscous contributions obtained in this way are highlighted in
Fig. 2.

3.2 Equilibrium contributions

The evolution of σe as a function λ, with increasing λmax, is illustrated in Fig. 3. The elastic
response is strongly affected by the increase in historical maximum strain, and this implies
that at least some of the Mullins effect arises from an evolution of the underlying elastic
network, here simply dependent on λmax. Various hyperelastic models can be used to capture
the elastomer’s equilibrium response arising from the entropic nature of the network. In
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Fig. 3 The experimental σe
(symbols) and model σE−V
(lines) equilibrium contributions
as a function of stretch for five
pre-deformation λmax levels
between 2 and 6. The model is an
Edwards-Vilgis function
accounting for the permanent set
λset

this instance, an Edwards-Vilgis (E-V) hyperelastic function (Edwards and Vilgis 1986) is
chosen due to the physically inspired model parameters. The E-V strain energy density W

function is given by

W = 1
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where kB is the Boltzmann constant, T is the absolute temperature, NC is the cross-link
density, NS is the slip-link density, η is a measure of slip-link mobility, α is a measure of
finite chain inextensibility and λi are the stretches in the principal directions.

The stress in the E-V spring can be determined by differentiation of Eq. (1) with respect to
the stretch direction, accounting for isochoric deformation. E-V parameters were obtained
by optimization on each third loop elastic contribution, and the process was repeated for
all values of λmax. The optimization algorithm was coded in Matlab using the ‘lsqcurvefit’
tool to obtain values of NC, NS, α and η by minimization of the error, defined here as the
root-mean-square (rms) of the difference between experimental and numerical stress values
within one unload-reload loop. It was found that an E-V function on its own was unable to
produce satisfactory fits to the data, and in order to achieve good agreement, it was necessary
to incorporate a measure of permanent set λset, achieved via a multiplicative decomposition
of λ into

λ = λsetλeff (2)

where λeff is the effective stretch, i.e. the stretch actually experienced by the network, and
λset is a permanent plastic stretch arising from irreversible effects. In addition, NC was al-
ways several orders of magnitude smaller than NS, and hence insignificant as far as the total
elastic stress is concerned. This is most likely due to the difficulty in separating the effects
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Fig. 4 (a) Viscous stress σV as a function of stretch λ, and (b) the viscosity ηV as a function of effective
stretch λeff. When expressed as a function of λeff, the viscosity data overlay to form a master curve. A simple
function is fitted to describe the viscosity master curve

of cross-links and slip-links. Hence, for the purpose of modeling the elastic response, it was
sufficient to express the E-V function as

W = 1
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This combination produced excellent agreement between the elastic data and the E-V
functions, as shown in Fig. 3, with rms errors typically of the order of 0.01 MPa, and always
less than 0.02 MPa.

3.3 Viscous contributions

The viscous contribution to the stress σV is illustrated in Fig. 4a for all values of λmax as
a function of λ. The varying levels of λmax lead to different σV vs. λ curves. This viscous
contribution is associated with flow of the network, and, as such, a viscosity ηV is defined as

ηV = σV,true

ε̇true
(4)

where σV,true is the true flow stress and ε̇true is the true strain rate. It was found that σV

differed with varying levels of λmax, however, once λset obtained from the elastic opti-
mization is accounted for, and ηV is plotted as a function of λeff, the curves overlap to
form a single master curve as shown in Fig. 4b. The implication of this is that ηV may
be modeled as a Mullins-independent, but λeff-dependent quantity. A plausible explanation
for this effect is that molecular alignment leads to an increasingly anisotropic flow pro-
cess. Similar effects have been noted in polymer glasses (De Focatiis and Buckley 2006;
Senden et al. 2010).

Starting from the definition of true strain,

εtrue = ln (λ) = ln (λeff) + ln (λtrue) (5)

the time derivative of Eq. (5) is calculated to determine ε̇true and is expressed as

ε̇true = λ̇

λ
= λ̇eff

λeff
+ λ̇set

λset
(6)
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where λ̇eff is the effective stretch rate and λ̇set is the rate of change of permanent set. The data
used to determine the viscosity is obtained from the third loop. The evolution of λset pre-
dominantly takes place during the first loading, and it is assumed that λ̇set = 0 for subsequent
loadings. Equation (6) is thus reduced to

ε̇true = λ̇

λ
= λ̇eff

λeff
(7)

The relation between true σV,true and nominal σV flow stresses can be expressed as σV,true =
λσV, and hence, by substitution of Eq. (7) into (4), ηV can be expressed as

ηV = σVλλeff

λ̇eff
(8)

4 Constitutive modeling

This section describes the implementation of a constitutive model incorporating the exper-
imental observations stated above: (1) an additive decomposition of stress into elastic and
viscous components; (2) the need for an effective stretch to account for permanent set; (3)
network elasticity evolving with maximum stretch, and (4) a stretch-dependent viscosity.
In addition, the behavior within viscoelastic transients will be considered to complete the
model.

The proposed model, illustrated in Fig. 5, is a modified viscoelastic standard linear solid
(SLS) model in series with a custom ‘slider’ element representing the permanent set. The
modified SLS model consists of an E-V hyperelastic spring in parallel with a non-linear
Maxwell element. The non-linearity of the Maxwell element arises from the non-linearity
of the dashpot viscosity.

4.1 Model elements

4.1.1 Slider

In the proposed model, λ is decomposed into λeff and λset via a multiplicative decomposition
as described in (2). The significance of λeff in this model is that it refers to the stretch that the
E-V spring and the Maxwell element actually experience. The permanent set here represents
the combined effects of irreversible deformation experienced by rubber and filler combined.
It is modeled by a slider as shown on Fig. 5 whose stretch is, for the case of simple uniaxial
deformation dealt with here, dependent on a monotonic function of λmax. To cover more
general cases this may need to be a more complex tensorial function of time, temperature
and deformation history.

4.1.2 Non-linear Maxwell element

The viscoelastic behavior exhibited by the elastomer arises from local bond stiffness and
viscous flow of monomer segments past each other and past the filler. Here it is modeled by
a non-linear Maxwell element consisting of a linear elastic spring in series with a non-linear
dashpot, as shown in Fig. 5. The governing differential equation for this element is

σ̇M + σM

τ
= λ̇effE (9)
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Fig. 5 A modified viscoelastic standard linear solid (SLS) model in series with a slider intended to represent
permanent set. The SLS part of the model consists of an Edwards-Vilgis hyperelastic spring in parallel with
a linear spring and a non-linear dashpot

where σM is the stress in the Maxwell element, σ̇M is the stress rate, τ is a relaxation time,
λ̇eff is the effective stretch rate, and E is the stiffness of the linear spring. The relaxation
time τ is given by ηV/λλeffE, where ηV(λeff) is the viscosity of the dashpot, which itself is
a function of the effective stretch λeff, i.e. the viscosity master curve.

4.2 Parameter evolution

The values and uncertainties (expressed as 95% confidence intervals) of NS, η, α and λset ob-
tained from the optimizations carried out on the equilibrium contributions are illustrated on
Fig. 6, for the full range of experiments carried out to different λmax. At small values of λmax,
there is considerable uncertainty on these parameters due to the limited strain range of equi-
librium data away from transients. All parameters exhibit a dependence on λmax, suggesting
that the maximum level of deformation influences all aspects of the elastic network. To de-
scribe this evolution, simple mathematical functions were fitted to the parameters as shown
in Fig. 6, for values of λmax ≥ 2.5 only. Several forms of these functions were explored, and
the functions selected are by no means unique, but provide simple and numerically stable
representations of the parameter evolutions.

The forms of the functions selected to describe the evolution of the E-V parameters and
of λset are

log10 (NS) = C1,NSλmax + C2,NS (10)

α = C1,αλ
2
max + C2,αλmax + C3,α (11)

η = C1,η exp
(−C2,η (λmax − 1)

)
(12)

λset = 1 + C1,set
(
exp

(
C2,setλmax

) − exp
(
C2,set

))
(13)
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Fig. 6 The evolution of (a) slip-link density NS, (b) slip-link mobility η, (c) chain inextensibility α and
(d) permanent set λset with pre-deformation λmax. The parameters extracted from the elastic contributions
are shown as circles. The corresponding uncertainties (95% confidence interval) are also shown. To describe
the evolution of these parameters, simple functions (lines) are fitted to the extracted parameter values as
functions of λmax for λmax ≥ 2.5 (larger circles)

Table 1 Estimate ±1 standard
uncertainty for the coefficients of
Eqs. (10)–(14) describing the
evolutions of the elastic
parameters: slip-link density NS,
chain inextensibility α, slip-link
mobility η, and of the permanent
set λset, and of the viscosity ηV,
as a function of maximum stretch
λmax

Parameters Coefficients

log10 NS C1,NS −0.104 ± 0.048

C2,NS 26.662 ± 0.211

α C1,α 0.006 ± 0.004

C2,α −0.079 ± 0.031

C3,α 0.417 ± 0.063

η C1,η 1.055 ± 0.234

C2,η 0.586 ± 0.100

λset C1,set 0.009 ± 0.006

C2,set 0.577 ± 0.113

ηV C1,ηV (0.411 ± 0.079) MPa s

C2,ηV 3.974 ± 0.148

C3,ηV (7.379 ± 0.569) MPa s

To ensure that the permanent deformation is zero for virgin specimens, the condition
λset = 1 at λmax = 1 is applied to an exponential equation of the form λset = C3,set +
C1,set exp

(
C2,setλmax

)
, resulting in expression (13). The estimates for the coefficients Cj,k

fitted to the data using linear regression for the functions are reproduced in Table 1.
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Fig. 7 (a) The experimental third loop response (symbols) for a pre-deformation λmax of 2.5 and the model
elastic contribution σE−V (line). (b) Viscous contribution obtained by subtraction of the elastic stress obtained
from the E-V model (symbols) from the total experimental stress, as a function of the effective stretch.
The Maxwell model response σM (line) is obtained by solving numerically the governing equation for the
non-linear Maxwell element (9) and optimizing for the spring stiffness. The vertical dashed lines are used to
identify the transition between transient and steady-state portions of the data

4.3 Viscosity master curve

To describe the viscosity master curve as illustrated in Fig. 4b, a function of the form

ηV = C1,ηVλ
C2,ηV
eff + C3,ηV (14)

is proposed, and parameters are obtained by minimizing the normalized error and provided
in Table 1.

Different approaches have been proposed to describe viscosity within a rubber consti-
tutive model. These approaches often modify the dashpot element within a generalized
Maxwell framework to capture inelastic effects, for example see the work of Rendek and
Lion (2010), and Jalocha et al. (2015). Currently, to the best of the authors’ knowledge,
despite the experimental evidence suggesting a Mullins-independent but stretch-dependent
viscosity, such an implementation has not been previously attempted for elastomers.

4.4 Determination of the linear spring modulus

The non-linear Maxwell element includes a linear elastic spring that, together with the non-
linear dashpot, describes the transient response of the viscoelastic arm of the model. In
order to determine E, the response within the transient regions must be considered. One can
determine E via the numerical evaluation of Eq. (9) for the case of constant effective rate of
deformation, where E is the only unknown.

The viscous contribution is obtained by subtracting the extrapolated elastic contribution
predicted by the E-V model from the experimental third loop response within the transient,
i.e. σ −σE−V. This is necessary because it is not possible to use the mean equilibrium exper-
imental data within a transient. Fig. 7a illustrates an example of the third loop experimental
data and the model elastic response extrapolated into the transients. The stress resulting from
the subtraction process is shown in Fig. 7b.

In order to obtain a suitable value of E, the loading portion of σM is used in a least squares
algorithm against a numerical solution for Eq. (9). This procedure was implemented on all
experimental data sets to obtain E = 3.07± 1.09 MPa. Fig. 7b shows an example of the
experimental and model transient responses for the case λmax = 2.5. Although the agreement
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Fig. 8 Comparison of
experimental (symbols) and
model (lines) third loop response
for five pre-deformation λmax
levels between 2 and 6. The inset
shows the deformation history
imposed on the specimens and
the third unload-reload loop

between model and experiment is far from perfect, it should be noted that experimental data
within the transients is noisy, and that for an accurate reproduction of the transients it is
likely that a spectrum of relaxation times would be required.

A summary of the steps required in order to extract model parameters and their evolution
is provided in Appendix A.

5 Results

5.1 Simulation of the third loop response

Once all model parameters have been obtained, they can be employed in generic simulations
of the response. A comparison between the experimental and model third loop responses is
shown on Fig. 8 for five λmax levels ranging from 2–6. Using a single set of model param-
eters, some of which evolve with λmax, simulation and experimental data are generally in
good agreement, with the shape of the curves and the degree of permanent set matching
reasonably well for all levels of stretch.

5.2 Simulation of more complex deformation histories

To probe the capability of the model, it was subjected to complex loading conditions prob-
ing cycles within a previously defined maximum stretch. Two protocols are employed, both
of which condition the material by subjecting it to three cycles through to λ = 4. The first
protocol (TP1) is followed by load/unload loops, where the specimen is loaded to increasing
stretch levels and always unloaded (to 0.1N). The second protocol (TP2) starts at the max-
imum λ of 4, and unloads to progressively smaller λ, always reloading to λ = 4. The two
protocols are shown in the insets of Figs. 9 and 10.

Comparisons between the experimental and the model responses for TP1 and TP2 are
shown on Figs. 9 and 10, respectively. The primary loading is also shown here, and it can be
seen that the model underestimates the stress in the latter stages of the loading. Beyond the
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Fig. 9 A comparison between
the experimental and model
responses for TP1. The protocol
consists of three uniaxial
load/unload cycles, followed by
five reload/unload loops and a
reload/unload cycle, as shown in
the inset. The dashed line in the
inset represents the data that has
been omitted from the plot

Fig. 10 A comparison between
the experimental and model
responses for TP2. The protocol
consists of two uniaxial
load/unload cycles, a reload step,
four unload/reload loops, and
lastly an unload/reload cycles and
an unload step, as shown in the
inset. The dashed line in the inset
represents the data that has been
omitted from the plot

initial loading, during the cycles, the model reproduces the stress well during the remain-
ing deformation histories, although the transient responses saturate somewhat faster in the
simulations compared to the experiments.

6 Discussion

6.1 Post-Mullins response

The model parameters were obtained by the use of cyclic experimental data sets, each of
which remains within a pre-defined value of λmax. Thus, it is perhaps not surprising that the
third unload-reload loops are reproduced to a good degree of accuracy. It should be noted,
however, that the model does overestimate the stress for large values of λmax. This over-
estimation is attributed primarily to the combined inaccuracies arising from the functions
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Fig. 11 A comparison of the
experimental E

exp
C and model

Emod
C energy dissipated by the

third loop

Fig. 12 Comparison between
the dissipated energy obtained
from experimental Emod

C and
model λset loops in complex
loading histories TP1 and TP2

describing the evolution of the E-V parameters. It is possible that selection of more complex
functions may lead to a better overall fit, but at the expense of an increase in the number
of constants. What is particularly encouraging is the agreement in the energy dissipated per
cycle between simulation Emod

C and experiment E
exp
C , illustrated in Fig. 11. This is of inter-

est in damping applications, and it shows that the model can accurately account for changes
to dissipation arising as a result of changes to the constitutive behavior associated with the
Mullins effect.

A further analysis of the dissipated energy can be obtained by considering the more
complex deformation histories explored in Fig. 9 and Fig. 10. Emod

C and E
exp
C are compared

in Fig. 12, and again show generally a good level of agreement. The model overpredicts the
energy dissipated by a small fraction, and this is attributed to the discrepancy in the transient
behavior noted in Figs. 9 and 10.
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6.2 Pre-Mullins response

Although the virgin loading response is never employed in obtaining the model parameters,
it can be obtained from the model by extrapolation of the E-V parameters to zero strain. This
allows for a comparison between the model and experimental first loading as highlighted
on Figs. 9 and 10. It is apparent that there is an increasing discrepancy in the stress for
λ > 2, and the model underpredicts the stress during the first loading. It is plausible that the
changes occurring when the material is exceeding its previous λmax (i.e. when λ̇set > 0 and
model parameters are evolving) might themselves be associated with a dissipative and time-
dependent process. This would not be surprising since there is evidence in the literature of
Mullins healing (Corby and De Focatiis 2019).

In line with the above idea, one approach to achieving a larger stress during the first
loading could be to include an additional viscosity dependent on λ̇set. A stress defined in
this way would only be present during the initial loading stage, and hence not impact the
rest of the simulations.

6.3 Extension to a fully three-dimensional model

In principle, the only major obstacles to a fully three-dimensional (3D) implementation of
the proposed model concern the description of permanent set, of the elastic parameter evo-
lution, and of a suitable effective stretch scalar, all of which are possible. It is well known,
however, that both processing and deformation of elastomers can lead to anisotropic behav-
ior (Diani et al. 2009; Fernandes and De Focatiis 2015; Mullins 1949). Constitutive models
ought to accommodate this induced anisotropy, which will undoubtedly affect not only the
elastic part but also the viscosity and the permanent set. This would require a much more ex-
tensive experimental data set involving sequential straining in different directions to identify
where simplifications might be made in order to reduce the number of material constants.
Typically, the notion of material directions is used to tackle anisotropy, for example see work
by Göktepe and Miehe (2005), Diani et al. (2006), Itskov et al. (2010), Merckel et al. (2013)
and Rebouah et al. (2013).

It is worth noting that, in an early study by Mullins (1949), when sheets of elastomers
were subjected to sequential deformations in two perpendicular directions it was found that:
(1) the ratio between the permanent sets in the alternating directions remained constant,
largest in the direction of stretch; and, (2) the permanent deformation remained isochoric. It
is therefore plausible that a significant part of the observed anisotropy could be attributed to
permanent deformation alone, and that an isotropic (but evolving) hyperelastic formulation
coupled with a simple 3D representation of permanent set might suffice in a generic 3D
implementation. Work is on-going in our laboratory to assemble a 3D model based on this
hypothesis.

7 Conclusions

This study has described how a constitutive model can be assembled on the basis of observa-
tions made from the separation of elastic and viscous contributions in uniaxial cyclic tensile
experiments on EPDM rubber. The model includes a description of the evolution of both
permanent set and hyperelastic parameters of an Edwards-Vilgis function to account for the
Mullins effect. The novelty of this model arises from the use of a viscosity master curve
to describe the non-linear Mullins-independent but strain-dependent flow stress, which was
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obtained directly from the viscous contribution from the experimental data. The approach
described also presents a straightforward route to obtaining the relevant parameters from
cyclic experimental data.

The model reproduces the cyclic response of the deformation histories explored in this
study to a good level of accuracy. The model is also able to accurately predict the dissipated
energy per cycle and its change with increasing levels of pre-deformation. Where cycles
are smaller in amplitude, and the dissipated energy is more influenced by transients, the
accuracy of the predictions is reduced since the model employs a single relaxation time.

When the prediction of the initial loading is compared to experimental data, the model
underestimates the stress at larger strain levels. In practical applications, where elastomeric
products are often scragged (i.e., subjected to pre-deformation), this limitation is less rel-
evant, and the focus is always on the cyclic response, and how it changes with different
scragging levels, something which the model predicts well.
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Appendix A: Summary of parameter identification strategy

Handling experimental data:

1. Decompose the third loop of the uniaxial cyclic data into σe and σv.
2. Discard the transient portions of σe and σv.

Identification of E-V parameters and λset:

3. Fit the derivative of W (Eq. (3)) with respect to λeff to σe for all values of λmax explored.
4. Select and fit appropriate functions (Eq. (10)–(13)) to describe the evolution of E-V pa-

rameters and λset.

Identification of the viscosity master curve

5. ηV
(= σV,true/λ̇true

)
forms a master curve when λset is accounted for.

6. Fit an appropriate function (Eq. (14)) to describe the evolution of viscosity.

Identification of E:

7. Consider the transient portions discarded in step 2.
8. Subtract from the transient portion the elastic response predicted by the E-V model.
9. Minimise the rms error between the experimental data and the numerical solution to

Eq. (9) at a constant effective rate of deformation to identify E.
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