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This paper presents experimental evidence of the effect of molecular 

orientation on large tensile deformation of polystyrene in the glassy 

state, and a new molecularly aware constitutive model being developed 

for this task. Comparisons between experiments and simulations 

illustrate that the model requires additional physics to cope with 

deformation involving sub-entanglement orientation. 

Introduction 

The ability to predict the large deformations of processed entangled glassy polymers such as 

atactic polystyrene (PS) presents a number of challenges. In the melt, molecules are oriented 

by the flow and stretched within their entanglement constraint tubes. The development of 

orientation and stretch is particularly sensitive to details of the nanoscale structure of the 

polymer, such as molecular length. When subsequently deformed in the glassy state, both 

orientation and stretch continue to evolve in conjunction with viscous flow and structural 

evolution. This combination of experimental and modeling techniques constitutes an attempt 

to shed more light on this challenging aspect of polymer science, and puts forward a modeling 

methodology that incorporates elements from both the rheological literature and the 

traditional solid-state modeling approaches. It has been made possible largely due to the 

support of the Microscale Polymer Processing Consortium enabling collaboration between a 

wide range of academic and industrial establishments. 

Experimental method 

The materials studied in this work were atactic linear PS: two monodisperse grades  

262kg/mol (AF) and 518kg/mol (AG), and one commercial grade Mw = 216kg/mol PDI=2.54 

(R). The linear viscoelastic spectrum was obtained from linear oscillatory shear experiments 

and from experimental DMA data (torsion of a rectangular bar). The obtained curves were 

shifted using time-temperature superposition to provide a single master curve at a reference 

temperature of 120°C, shown in Figure 1 for material AG.  

Oriented specimens were obtained by hot-drawing in an Instron tensile testing 

machine fitted with environmental chamber using two procedures: (1) immediately quenching 

after drawing; (2) allowing a controlled dwell time (stress-relaxation at constant strain) prior 

to quenching. For procedure (1) the drawing conditions were temperatures ranging from 

105ºC to 135ºC at a nominal strain rate of 0.02s
-1

 to a stretch of λ=3 for all materials. For 

procedure (2) the conditions for material AF were temperature of 120ºC and nominal strain 

rate of 0.02s
-1 

to a stretch of λ=3, with dwell times from 1s to 100000s, and for material R 

temperature of 105ºC and nominal strain rate of 0.02s-1 to a stretch of λ=3, with dwell times 

from 1s to 100000s. 

Birefringence was measured on all oriented specimens at room temperature using an 

Olympus transmission optical microscope fitted with a Berek rotary compensator. The 

constitutive response of oriented specimens in the glassy state was investigated by tensile 

testing in an Instron testing machine at 96±1ºC (below Tg) at a nominal strain rate of 0.001s-1. 
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In PS this lies in the very narrow window of temperature and rate in which the material is in 

the glassy state and yet is not too brittle to test in tension. Strain was monitored using an 

Instron, non-contact, video extensometer following thin transverse lines marked on each 

specimen. 
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Figure 1 – The linear viscoelastic spectrum of a 518kg/mol PS (AG). Also shown is the 

discrete spectrum used in the constitutive model, computed from a spectrum of Maxwell 

modes. 

Constitutive model 

The modelling methodology used here consists of the combination of two existing 

constitutive models in a coherent framework. The conformational behaviour is modelled 

using the well-known Rolie-Poly (RP) equations, intended for use in monodisperse polymer 

melts. The glassy non-linear viscoelasticity is modelled using the Oxford glass-rubber 

constitutive model, intended for use in polymers across the glass transition.  

The combined glass-RP constitutive model is assembled from a spectrum of Maxwell 

modes obtained by fitting to the full linear viscoelastic spectrum of the material, shown in 

Figure 1. Using multiple monodisperse grades of PS fitted to the full linear theory of 

Likhtman and McLeish [1], the entanglement modulus (a material parameter for PS) was 

determined as Ge=286.2kPa, and used as the sum of the conformational modes. The remaining 

modes were assumed to be glassy. The constitutive equations for the RP modes can be found 

in ref [2], although in the present implementation a finitely extensible version of the RP 

model is used with a finite extensibility of λ=3.99 (as computed from a Kuhn chain analogy). 

The first Maxwell mode is fixed at the longest reptation time; the values of Rouse and 

reptation times for all other RP modes are then calculated using the material property τe at 

120°C and the relationship between τR and τd in ref [3]. 

The constitutive equations for the glassy modes are based on calculation of the 

deviatoric rate of deformation as the sum of a linear elastic bond stretching part, and a 

contribution from the viscous flow of molecular segments. The characteristic yield drop seen 

in Figure 3 is modelled empirically through the evolution of the fictive temperature as a 

function of viscoplastic strain. In both the RP and the glassy modes, relaxation times shift 

with temperature and structure (expressed via fictive temperature) using a Macedo-Litovitz 

equation; additionally, the glassy modes also shift with stress using a 3-dimensional form of 

the Eyring theory. Full details are in ref. [4]. 

Results and discussion 

Figure 2(a) shows birefringence measurements following procedure (1), and Figure 2(b) 

following procedure (2). The birefringence model predictions were computed from the 

constitutive model using a stress-optical coefficient of  C=-4.5×10
-9

Pa
-1

 [5] multiplied by the 

orientation tensor contribution from the RP modes of the model. Figure 3(a) shows 

representative stress-strain curves for pre-oriented material AG redrawn in the glassy state 
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following procedure (1). Figure 3(b) shows constitutive model simulations for the same 

conditions. Qualitatively similar behaviour was seen both experimentally and numerically in 

the other materials, and following procedure (2) (not shown).  
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Figure 2 - Birefringence measurements of PS specimens after the pre-orientation procedure, 

with predictions computed from the orientation tensor from the RP part of the model. Pre-

orientation at a range of temperatures followed by immediate freezing (a); pre-orientation at 

fixed temperature followed by a dwell time (stress-relaxation) prior to freezing (b). 

 

Nominal Strain

0.0 0.2 0.4 0.6 0.8 1.0

T
ru

e
 S

tr
e

s
s
 (

M
P

a
)

0

10

20

30

40

Hot-drawing T=105

135

Nominal Strain

0.0 0.2 0.4 0.6 0.8 1.0

T
ru

e
 S

tr
e
s
s
 (

M
P

a
)

0

10

20

30

40

Hot-drawing T=105

135

 
Figure 3 – Glassy tensile stress-strain curves for a 518kg/mol monodisperse PS pre-deformed 

at temperatures from 105ºC to 135ºC at a strain rate of 0.02s
-1

 and immediately frozen, and re-

drawn in the glassy state at 96ºC at a strain rate of 0.001s
-1

 (a); simulations using the 

constitutive model (b). 

 

Although not shown here, the combined model accurately captures both the behaviour of 

isotropic material deep in the glassy state, and the non-linear shear and extensional rheology 

deep in the melt state. Here in the pre-oriented glassy state, however, it is apparent from 

Figure 3 that although the model qualitatively captures the main features of the pre-oriented 

specimens, a quantitative fit is yet to be achieved. There are two important pieces of 

experimental evidence that help to shed light on this. The first comes from considerations of 

the simulations of birefringence. The model fits are accurate for Wie<1, but the birefringence 

appears to saturate in the model for Wie>1. Since birefringence in PS is a measure of 

orientation of the backbone, this implies that the constitutive model is missing additional 

modes that provide orientation. These are expected to be highly stretched sub-entanglement 

Rouse modes, although the exact physics for finite deformation of these modes is lacking at 

present. 

The second consideration comes from analysis of the measurements of yield stress, 

shown in Figure 4 as functions of the τe-based (a) and the τd-based (b) Weissenberg numbers. 

Plotting against Wid illustrates that the different molecular weights collapse onto one line and 

appear to drop together towards the isotropic yield stress for decreasing Wid. This is a 

confirmation that the RP model is successful in capturing the effect of molecular weight on 

(a) 

(a) (b) 

(b) 
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reptation. However, plotting against Wie shows that for Wie >1 there is a secondary increase in 

yield stress, independent of molecular weight (since Wie is the same for both materials), and 

occurring with orientation on a sub-entanglement length scale (Wie >1). This implies that sub-

entanglement orientation leads to more anisotropy of yield than is expected just from a 

conformational contribution. One approach towards the incorporation of this phenomenon is 

to recognise the intrinsic anisotropy of flow of molecular segments on a sub-entanglement 

length scale [6].  
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Figure 4 – Glassy state yield stress (at 96ºC at a strain rate of 0.001s-1) for monodisperse PS 

materials AF (262kg/mol) and AG (518kg/mol) pre-oriented at temperatures from 105ºC to 

135ºC at a strain rate of 0.02s-1 and immediately frozen, as a function of the τe-based (a) and 

the τd-based (b) Weissenberg numbers. 

Conclusions 

This study has presented experimental evidence of the effects of molecular orientation on 

glassy-state deformation, and has proposed a framework for constitutive modelling of 

processed oriented polymers based on existing melt-state and solid-state models. Although the 

combined constitutive model is successful in capturing the qualitative behaviour, there are 

quantitative shortcomings in the regions of deformation where there is sub-entanglement 

orientation. The experimental evidence suggests that this length-scale, located between an 

entanglement and a Kuhn length, requires a combination of two approaches: the recognition 

of the presence of orienting sub-entanglement chains (finitely extensible Rouse modes), and 

the incorporation of the anisotropy of flow of molecular segments. 
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