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Abstract 

Employing a test method with coupled application and peel phases, tack was characterised for a UD prepreg 

tape. Different aspects of tack were explored by varying test parameters and material condition. In addition, 

different surface combinations were studied. In general, the test parameters, feed rate and temperature, affect the 

balance between cohesion within the resin and adhesion between resin and substrate. Exploring a range of 

parameters is required to understand the effect of viscoelastic resin properties on tack. The application pressure 

determines the true contact area between prepreg and substrate and hence affects tack. Changes in molecular 

mobility in the resin related to specimen conditioning, i.e. ageing or moisture uptake, result in maximum tack to 

occur at lower or higher feed rates, respectively. Differences in tack for different material combinations can be 

attributed to different molecular interactions at the contact interfaces and different resin distributions on the 

prepreg surfaces. 
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1 Introduction 

Large composite components, in particular for aerospace applications, are frequently 

manufactured employing Automated Material Placement (AMP) processes, such as 

Automated Tape Laying (ATL) or Automated Fibre Placement (AFP). In AMP, robotic 

machinery applies layers of prepreg tape, typically from carbon fibre and partially cured 

thermoset resin, to the surface of a tool (at defined orientations) to form a laminate. The 

achievable laminate quality at given process parameters is related to the level of adhesion 

(tack) between the prepreg and the surface of the tool, between adjacent prepreg layers in a 
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laminate, and between the prepreg and application rollers on the placement machinery. To 

prevent formation of defects in the uncured lay-up, such as wrinkling or bridging in the 

presence of local compressive or tensile forces in the prepreg tape, a sufficient level of 

prepreg-tool and prepreg-prepreg tack is required to withstand separating forces at the 

interfaces [1-3]. On the other hand, tack between the prepreg and application rollers needs to 

be minimal to prevent resin from building up on the rollers, or prepreg sticking to and 

eventually wrapping around the rollers, which would lead to failure of the lay-up process. 

Experimental characterisation of tack is a prerequisite for prediction of the behaviour of a 

prepreg during processing. 

In published studies, tests with separate compression and tension stages are frequently 

employed for tack characterisation [1-10]. In the method described by Gillanders et al. [4], a 

single layer of prepreg is bonded to a specimen holder. Then, a flat metallic probe is pressed 

onto the exposed face of the prepreg at defined pressure and temperature for a defined period 

of time. When the probe is pulled off at a defined rate of separation, the strength of the bond 

between prepreg and probe is measured. Employing a similar method, Seferis and Meissonier 

[5] compressed a stack of prepreg layers between two flat parallel plates at a given pressure 

for a defined time interval to allow adhesion to form between adjacent layers, after the top 

and bottom layers had been bonded to the compression plates. The stack was subsequently 

loaded in tension at a defined rate. The total energy per unit volume required to separate the 

plies in tension is a measure for tack between prepreg layers.  

An alternative method for tack testing is described by Banks et al. [11]. In a first stage, a 

prepreg strip is bonded to a metal substrate at defined temperature and compaction pressure 

for a defined interval of time. In a separate second stage, the prepreg is peeled off the 

substrate at a controlled angle and a prescribed rate using a floating roller set-up described in 

ASTM 3167 [12]. Tack is then characterised by the peel force per unit specimen width. Rao 

et al. [13] documented a similar approach, where a laboratory-scale fibre placement system is 
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used in the first stage to bond the prepreg to the substrate at defined temperature, pressure 

and application speed. 

A single-stage peel test for measurement of tack between a prepreg specimen and a rigid 

surface using a test fixture similar to the floating roller set-up was proposed by Crossley et al. 

[14]. This test differs from other methods in that the prepreg is bonded to and peeled from the 

substrate in a single continuous motion. It was argued that this is more reflective of AMP 

processes, since the time scale for bonding the prepreg to the substrate can be short in AMP, 

and bonding and peeling stages cannot be separated. 

In this study, the continuous application-and-peel method proposed by Crossley et al. is 

employed to characterise the effect of different test parameters, surface combinations and 

prepreg conditions on measured tack for a carbon-fibre/epoxy prepreg. Results are related to 

observations reported in the literature based on tests with separate bonding and tension or 

peel stages. The aim is to further improve understanding of the fundamental phenomena 

governing tack and to give an indication on how to optimise process parameters for industrial 

AMP processes to obtain maximum lay-up performance at given prepreg properties. 

 

2 Material 

Tack was characterised for an aerospace grade uni-directional (UD) prepreg tape, made 

from intermediate modulus carbon fibres, at an areal density of 145 g/m2, and a toughened 

epoxy resin system, at a resin content of 33 % by weight. As typical for prepregs, the tape has 

two distinguishable faces. The inner face (when on a roll), is covered with a protective 

backing paper which is removed during the AMP process. The outer face, with no protective 

paper, is normally the face to be applied to the tool surface or another prepreg layer in an 

AMP process. In the following, the faces will be referred to as P (“paper”) or N (“no paper”). 

Specimens tested here were from two different batches of material. For consistency, 

specimens in each series of tests were from the same batch. Batch 1 was used for all 

experiments except for those with humidity conditioning, where batch 2 was used. 
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It was observed before that prepregs may show considerable variability in terms of local 

resin content and fibre alignment [15] and that resin distribution and surface morphology may 

vary between P face and N face [16]. Here, micrographs were taken to visualise the resin 

distribution on both prepreg surfaces. Images in Fig. 1 indicate that for both material batches, 

there tends to be more resin on the P face than on the N face of the prepreg. While both faces 

show irregular resin distribution for batch 1, the difference between faces is more evident for 

batch 2. The N face shows small-scale roughness related to the filament distribution beneath 

the surface of the thin resin layer. The thicker resin layer covering the P face shows 

roughness at a larger scale, which appears not to be related to the filament distribution.   

 

3 Experimental method 

Employing the continuous application-and-peel method discussed in detail by Crossley et 

al. [14], tack between a prepreg specimen and a rigid substrate is quantified as a peel force at 

a given specimen width. In short, rectangular prepreg specimens are laid up on rectangular 

steel substrates without any compaction. Substrates with specimens are then loaded into a test 

fixture (Fig. 2), which holds two pairs of stiff rollers, arranged horizontally. One pair of 

rollers provides guidance. In the second pair, the top roller (peel roller) is fixed, while springs 

apply a vertical force on the bottom roller (compaction roller). The compaction roller presses 

the prepreg against the substrate (and against the peel roller) at a controllable force. The 

fixture is mounted on the base of a universal testing machine. One end of the prepreg 

specimen is attached to the cross-head and load cell of the testing machine through a material 

clamp, such that the specimen is bent around the peel roller. In a tack test, the cross-head 

moves vertically at constant (adjustable) speed, which translates into a horizontal movement 

of specimen and substrate through the fixture. This results in the prepreg being bonded to and 

peeled from the substrate in a single continuous motion at a “feed rate” (or “peel rate”) which 

corresponds to the speed of the cross-head movement. Here, the duration of compaction is 
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inversely proportional to the feed rate. The tack force is derived from the tensile force at the 

load cell, which is recorded as a function of the cross-head displacement and is corrected for 

effects of friction in the set-up and bending of the specimen [14]. More detail is provided in 

the Appendix. 

Crossley’s original test method was extended to allow tack to be measured for material 

combinations other than prepreg-steel. The design of the test fixture was also modified [16] 

to allow the stiff peel roller to be replaced with a compliant roller made from stainless steel 

coated in polyurethane (PU), where the thickness of the PU coating corresponds to 1/3 of the 

outer roller radius (which is 25 mm) to obtain similar properties as rollers on AMP 

production machinery. Unless stated otherwise, tests in this study were carried out at a 

specimen width of 75 mm, with a stiff peel roller, and at a compaction force of 100 N. 

The tack testing fixture can be used in an environmental chamber, allowing tack to be 

measured at different temperatures as well as different feed rates. An example of typical 

results is given in Fig. 3, where the error bars indicate standard deviations as a measure of the 

uncertainty resulting from scatter in the measured tensile force in each individual experiment. 

The data show that, at low measurement temperatures, a maximum in tack occurs at low feed 

rates. With increasing measurement temperature, the maximum in tack moves to higher feed 

rates.  

For interpretation of the data, it is to be considered that prepregs show variability in local 

resin content and fibre alignment [15], which may result in significant variations in measured 

tack [4, 14]. Local variability at a scale smaller than specimen dimensions affects the force 

readings during each individual test (see Appendix), which is reflected in the size of the error 

bars in Fig. 3. On the other hand, variability at a scale larger than specimen dimensions 

results in scatter of the average values of different tests, which may make it harder to identify 

general trends. Experimental data may also be affected by uncertainty in the test conditions, 

mainly in the temperature at the interface between prepreg and substrate, which is harder to 

control than feed rate and compaction force. Here, the temperature was monitored on the 
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surface of the laid-up specimen prior to testing using a non-contact infrared thermometer, and 

tests were started when the measured temperature was within ±1 °C of the target temperature. 

During the tack tests, the relative humidity in the environmental chamber, was recorded but 

not controlled. 

 

4 Time-temperature superposition 

The principle of time-temperature superposition (TTS) implies that the viscoelastic 

behaviour of a polymer at a given temperature and frequency of dynamic loading can be 

related to that at another temperature through a shift in frequency of loading. This means that 

the modulus, G (which can be either the storage modulus, G’, or loss modulus, G” ), at a 

temperature, T, and frequency, ω, is equal to the modulus at a reference temperature, T0, and 

frequency, ωaT, where aT is commonly referred to as shift factor: 

 ),(),( 0 TaTGTG ωω =   . (1) 

At a given T0, the dependence of aT on temperature is commonly described by the Williams, 

Landel and Ferry (WLF) equation,  

   , (2) 

where C1 and C2 are empirical constants [18]. Applying the principle of TTS allows a master 

curve of the moduli as a function of the shifted frequency to be produced at a reference 

temperature by multiplying the measurement frequency by a shift factor according to Eq. (2). 

Shifting effectively extends the frequency domain beyond the measurable range.  

While TTS has been applied to construct tack master curves for pressure-sensitive 

adhesives [19], Crossley et al. [20] demonstrated that the same principle can also be applied 

to tack of prepregs, using shift factors obtained from complementary rheological 

measurements on the resin system in the prepreg. This implies that the tack force, Ft, 
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measured at temperature, T, and feed rate, r, is equal to the tack force at the reference 

temperature, T0, and the shifted feed rate, raT: 

 ),(),( 0tt TarTFrTF =   . (3) 

Employing this relation allows tack data at feed rates representative for AMP processes 

(typically in the order of 1 m/s), which are experimentally unachievable due to limitations on 

the cross-head speed on testing machines (typically in the order of 1 m/min), to be obtained 

through shifting of data acquired at low temperatures.  

For the material characterised here, values for the parameters in Eq. (2) were obtained 

from oscillatory rheometry on a sample of neat resin, after it had been exposed to the same 

heat cycle as in the prepregging process. Isothermal frequency sweeps were carried out at 

increasing temperatures in the range between 0 °C and 70 °C (incremented by 10 °C), at 

logarithmically increasing frequencies between 0.1 rad/s and 400 rad/s, within the linear 

viscoelastic region. The moduli as a function of the frequency, measured at the respective 

temperatures, were shifted to other frequencies to achieve optimal overlap with data 

measured at a selected reference temperature. From the shift factors for different 

measurement temperatures, the parameters in the WLF equation were determined as C1 = 

10.098 and C2 = 74.086 °C at T0 = 20 °C.  

For the tack data shown as an example in Fig. 3, shifting the feed rates to T0 = 20 °C gives 

the tack master curve in Fig. 4C. The figure suggests that shifted tack data, acquired in 

continuous application-and-peel tests, can be approximated by a Gaussian curve described by  
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Here, Ftmax is the maximum tack force, rs = raT is the shifted feed rate, rsmax is the value of rs 

at maximum tack, and w indicates the width of the Gaussian curve. The coefficient of 

determination, R2, is given as a measure for the quality of the fit. While the selection of the fit 

function is purely phenomenological and not based on any physical model, Ftmax and rsmax in 
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Eq. (4) are useful for quantitative description of tack behaviour. An implication of Eq. (2) is 

that the entire tack master curve can be shifted from T0 to another reference temperature, T1, 

where the feed rate at maximum tack increases for T1 > T0 and decreases for T1 < T0.  

As discussed in the literature [5], prepreg tack is determined by adhesion between prepreg 

and substrate and cohesion within the resin in the prepreg. Adhesion depends on the physical 

and chemical properties of the surfaces and on the true contact area. For given viscoelastic 

properties of the resin, the true contact area is determined by the applied pressure, the 

duration of the compression, and the temperature. Cohesion within the resin in a prepreg 

depends only on its viscoelastic properties and is determined by the local strain rate and by 

temperature. Since, in the continuous tack tests discussed here, the prepreg is bonded to and 

peeled from the substrate in a single continuous motion, the general shape of the tack curve at 

any reference temperature (as in Figs. 4A to 4D) is determined by superposition of two 

competing effects:  

• Adhesive strength increases with decreasing feed rate, since stronger bonds can form with 

increasing time of pressing the prepreg onto the substrate (which can be a steel plate [14] 

or another prepreg layer).  

• Cohesive strength improves with increasing feed rate, since the flow stress increases with 

increasing strain rate at the point of peel (which is determined by the peel rate).  

As a result, tack at lower feed rates (to the left of the maximum of the Gaussian curve) is 

limited by cohesive failure in bonds formed between the prepreg and the substrate, and long 

drawn-out resin threads may be observed at the interface (“fibrillation”). At higher feed rates 

(to the right of the maximum), tack is dominated by adhesive failure, and minimal or no 

formation of resin threads is observed between the surfaces. Modifying the viscoelastic resin 

properties by changing the molecular mobility in the resin can result in tack levels within 

cohesive failure or adhesive failure (or both) to change. Hence, the transition from adhesive 

to cohesive failure may move to a different feed rate. Changing the thickness of resin layers 

on the prepreg surfaces, and hence the strain rate, may affect tack levels in the region of 
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cohesive failure. Hence, the transition between failure modes may change. Implications for 

the tack behaviour in terms of Ftmax and rsmax will be discussed in Section 5. 

As pointed out by Crossley et al. [20], the superposition of competing effects is not 

observed in compression-to-tension tests or in reported floating roller tests, where the 

duration of compression and the separation/peel rate are uncoupled, and where the 

compression and separation/peel stages may not be isothermal. However, the behaviour 

summarised in Figs. 4A to 4D is clearly related to observations reported in the literature. The 

decrease in tack at high feed rates, which results from a lack of time for bonds to develop, is 

consistent with the observations by Gillanders et al. [4], who found that tack measured in 

compression-to-tension tests increases with compression time, but quickly reaches saturation. 

Similarly, Seferis and Meissonnier [5] concluded that, at short compression time, tack is 

determined by adhesion, and otherwise by cohesion. Dubois et al. [10] observed fibrillation 

on the surface at low rates of separation, but not at high rates, which is consistent with a 

transition from cohesive to adhesive failure with increasing rate. Findings by Rao et al. [13] 

indicate that tack increases strongly with increasing temperature during compression of 

prepreg and substrate. This increase is related to improved molecular mobility at higher 

temperatures which facilitates (quick) formation of bonds and is consistent with the increase 

in feed rate at maximum tack with increasing temperature documented in Fig. 3. Similarly, 

Ahn et al. [6] reported that, at low temperature, tack is determined by surface effects 

(adhesion), whereas, at high temperature, it is determined by the viscoelastic resin properties.  

 

5 Results and discussion 

5.1  Effect of surface combination 

Tack was measured for prepreg on different surfaces relevant to AMP processes:  

• The original test procedure [14] was employed to measure tack between the prepreg and a 

polished and cleaned steel substrate, representing a flat tooling surface (neither release 
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agent nor tackifier was applied). Either the P face, after the paper was removed, or the N 

face of the prepreg was in contact with the steel surface.  

• The original procedure was adapted for prepreg-prepreg tack testing by bonding one 

prepreg layer onto a steel substrate (N face in contact with substrate) using double-sided 

adhesive tape. Tests on aligned plies for the surface pairings N on P and P on P were then 

conducted as for measurement of prepreg-steel tack. To obtain valid results, the bond 

between the prepreg and the steel substrate provided by the double-sided adhesive tape 

needs to be stronger than tack between the prepreg layers. Unless stated otherwise, there 

was no indication of insufficient bond strength between the bottom prepreg layer and the 

steel substrate which might have affected the tests. 

• Tack between fluorinated ethylene propylene (FEP), representing the surface coating of 

application rollers on material deposition machinery, and prepreg was measured 

employing a similar procedure as for measurement of prepreg-prepreg tack. A strip of FEP 

film at a thickness of 75 µm and a width of 75 mm was attached to the load cell. It was 

then applied to and peeled from a prepreg layer bonded onto a steel substrate using 

double-sided adhesive tape (i.e. the FEP film was in contact with the P face of the 

prepreg).   

For the five material combinations described above, tack was measured at (typically four) 

different temperatures and feed rates (as in the example in Fig. 3). The data were then shifted 

to a reference temperature (T0 = 20 °C). To compare results for different surface pairings at 

T0, values for the maximum tack force and the shifted feed rate at maximum tack were 

determined from fitted Gaussian curves according to Eq. (4). 

The data listed in Table 1 indicate that the maximum tack force between the P face and the 

steel substrate (Fig. 4A) is 93 % higher than that between the N face and the substrate (Fig. 

4B). The shifted feed rate at maximum prepreg-steel tack is by a factor 2.5 higher for the P 

face than for the N face. This difference in observed tack can be attributed to different 
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distribution and volume of resin on the two surfaces of the prepreg tape (Fig. 1, batch 1), 

which affect the true contact area and effective thickness of resin layers at the interface. As a 

result, both adhesion and cohesion are affected. 

The data show also that maximum prepreg-prepreg tack is generally higher than maximum 

prepreg-steel tack (by factors between 2.5 and 5.5, depending on the face). The shifted feed 

rates at maximum tack are of the same order of magnitude as for prepreg-steel tack, lower 

than for face P on steel and higher than for face N on steel. Maximum tack is 10 % lower for 

P on P (Fig. 4C) than for N on P (Fig. 4D). The feed rate at maximum tack is 14 % higher for 

P on P than for N on P. This weaker dependence of prepreg-prepreg tack on the surface 

combination (while the dependence on the surface combination is significant for prepreg-

steel tack) is consistent with the behaviour being dominated by the properties of the P face. 

Here, the resin volume tends to be greater than on the N face (Fig. 1), which would favour a 

greater contact area and thicker resin layer to form. In a laminate, the N face of a prepreg 

layer is normally in contact with the P face of a previously deposited layer. Hence, results for 

prepreg-prepreg tack reported in the following refer to this surface pairing. 

In measurement of FEP-prepreg tack, only a low-level force (generally in the order of 1 N) 

was observed (Fig. 4E). While virtually no tack could be detected at test temperatures of 20 

°C, 30 °C and 40 °C, residual resin was found sticking to the surface of the FEP film after the 

tests at a temperature of 50 °C. This indicates that there must have been a transition from 

adhesive failure at the interface to cohesive failure within the resin. However, since a 

maximum in FEP-prepreg tack was hard to identify, the acquired data are not evaluated 

quantitatively here. 

The differences in maximum tack observed for different surface pairings can be attributed 

to different interactions of polymer chains in the resin with surfaces of the substrates. The 

strength of developing bonds depends on both the chemical properties, which determine the 

type of bond (e.g. van der Waals forces), and physical properties (e.g. roughness) of the 
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surfaces. Prepreg-steel tack is significantly higher than FEP-prepreg tack, since adhesion fails 

to develop on the FEP surface due to the specific surface characteristics. For prepreg on 

prepreg, polymer chains inter-diffuse between resin layers on the prepreg surfaces, 

effectively forming a single layer [21]. The resulting bonds tend to show increased strength 

compared to those between prepreg and a rigid substrate. 

 

5.2  Effect of out-time 

While prepregs are normally stored in a freezer to delay heat-induced progression of resin 

cure, they are exposed to “workshop conditions” (i.e. ambient temperature and humidity) for 

a finite period of time, typically referred to as “out-time”, during laminate lay-up and prior to 

the curing process. To study the effect of out-time, tout, and the expected increase in the 

degree of cure [22] on prepreg tack, specimens were conditioned for 7 days and 14 days at a 

temperature of (19.1 ± 0.3) °C and a relative humidity of (42.4 ± 2.2) %. Top and bottom 

plies were conditioned separately before they were laid up for the tests. Specimens without 

out-time were exposed to the same (ambient) relative humidity at room temperature, albeit 

for a short period (a few hours) prior to being tested.  

At different out-times, prepreg-prepreg tack (N face on P face) was measured at a range of 

temperatures and feed rates. The measured data were shifted to a reference temperature T0 = 

20 °C using the same values of C1 and C2 for each out-time. Gaussian curves according to Eq. 

(4) were then fitted to the shifted experimental data (Fig. 5). Results characterising the tack 

behaviour, derived from the fitted Gaussian curves, are listed in Table 2. There is a trend for 

maximum tack to decrease with increasing out-time (by approximately 20 % for tout = 14 

days). More significantly, the feed rate at maximum tack decreases with increasing out-time 

of the prepreg specimens (by factors of approximately 5 for tout = 7 days and 20 for tout = 14 

days). Here, an increasing degree of cure of the resin in the prepreg results in reduced 
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molecular mobility and hence an increase in the time required for bonds to form between the 

plies during a tack test.  

Ahn et al. [7] studied the behaviour of a prepreg as a function of ageing time. They 

reported an increase in tack (measured in compression-to-tension tests) with increasing 

degree of cure at high test temperatures and a decrease at low test temperatures. This is 

consistent with the observation that, at a reference temperature, the (shifted) feed rate at 

maximum tack decreases. It was also observed that out-time affects the prepreg surface 

characteristics [6], which may have an influence on development of adhesion and eventually 

on tack. At a given set of parameters for compression-to-tension tests, Dubois et al. [10] 

report a decrease in tack with increasing out-time. However, the effect was small since the 

maximum out-time was only ∼33 hours. In floating roller tests, Banks et al. [11] observed 

low tack at short and long out-times, and a maximum in tack at intermediate out-times. This 

change in observed tack is consistent with a decrease in feed rate at maximum tack (as in Fig. 

5). As a result, the maximum moves relative to a fixed feed/peel rate which may be to the left 

of the maximum in Fig. 5A and to the right of the maximum in Fig. 5C. If test conditions are 

kept constant for specimens with different out-times (as described by Banks et al.), the 

movement of maximum tack to another peel rate may not be detectable. An apparent change 

in tack with increasing out-time may be observed, which may be misleading since the 

behaviour over a wider range of peel rates is ignored. 

In practice, the decrease in feed rate at maximum tack implies that, at a given temperature, 

the feed rate needs to be shifted to a lower value to obtain similar tack for a specimen with a 

given out-time as for a specimen with no out-time. Hence, it would be useful to describe the 

shift related to the specimen out-time by application of a factor to the feed rate, in a similar 

way to shifting applying TTS. This approach appears justified since out-time affects the 

molecular mobility in the polymer, as does temperature. While increasing temperature 

corresponds to increased mobility and hence a shift to higher feed rates, increasing out-time 

(degree of cure) corresponds to reduced mobility and a shift to lower feed rates. A similar 
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approach was taken by Derail et al. [23] who determined additional shift factors to account 

for the effect of changes in the polymer properties, such as molecular weight, on peeling 

properties of adhesives.      

 

5.3 Effect of relative humidity 

To study the effect of RH on tack, specimens were conditioned in sealed boxes prior to 

testing, following an approach described by Dubois et al. [10]. The conditioning boxes 

contained different saturated salt solutions corresponding to different (target) values of RH at 

room temperature: The salts used here were magnesium chloride (MgCl2; RH = 33 %), 

potassium carbonate (K2CO3; RH = 43 %), and sodium bromide (NaBr; RH = 59 %). 

Conditioning specimens at different RH implies that they either absorb or desorb moisture, 

depending on whether the initial moisture concentration in the specimen is lower or higher 

than the moisture concentration in the boxes, until equilibrium is achieved. In preparation for 

the tack tests, the minimum conditioning time required for moisture levels in the prepreg 

specimens to stabilise and the maximum allowable period for exposure of conditioned 

specimen to ambient RH (where a change in moisture content by no more than 20 % from the 

initial condition was considered acceptable) were established. At fully exposed surface area, 

the corresponding times were 120 minutes and 6 minutes, respectively. Both plies in the lay-

ups were conditioned separately before the tests. The conditioning time in the order of 2 

hours is not sufficient to cause a significant effect of out-time on the resin properties. After 

removing specimens from the boxes, top and bottom layers were brought into contact 

immediately to minimise the exposed surface area, and tests were carried out within 4.5 

minutes (depending on the time required for the specimens to reach the test temperature in 

the environmental chamber) to minimise changes in moisture content through diffusion. 

For illustration of differences in moisture content, a specimen of dimensions 30 mm × 115 

mm (backing paper removed to fully expose surfaces) was conditioned at different levels of 
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RH at a temperature of 21 °C. The specimen was conditioned at RH = 33 % first, then at RH 

= 43 %, and finally at RH = 59 % (for two hours at each level). Immediately after 

conditioning at each level, the specimen was weighed to determine the change in mass 

through moisture uptake. Results listed in Table 3 indicate the increase in moisture content in 

the specimen.  

For specimens conditioned at different RH, prepreg-prepreg tack (N face on P face) was 

measured at a range of temperatures and feed rates. The measured data were shifted to a 

reference temperature T0 = 20 °C. To compare tack at different RH, Gaussian curves were 

fitted to the measured data (Fig. 6), and maximum tack and the feed rate at maximum tack 

were determined at T0. 

Results listed in Table 4 show that maximum tack at all three target values of RH is 

significantly smaller than maximum prepreg-prepreg tack (N face on P face) without 

humidity conditioning (Table 1) and that the maxima occur at higher feed rates. It is thought 

that this is related to a different batch of material being characterised here (batch 2) than in all 

other test series (batch 1). The resin distribution on the surfaces is more regular, and the layer 

on the P face is thicker, for batch 2 compared to batch 1 (Fig. 1), which may explain the 

observed difference in tack behaviour between batches. However, the general trends observed 

here are not affected. 

The results show also that the target RH has an effect on measured tack. This effect is 

small when RH is increased from 33 % to 43 % (maximum tack is virtually unaffected, while 

the feed rate at maximum tack increases by 11 %) and more significant when RH is increased 

from 33 % to 59 % (maximum tack increases by 20 %, while the feed rate at maximum tack 

increases by 89 %). The observed effect is related to plasticization of the resin upon moisture 

uptake, the fundamentals of which are discussed extensively in the literature, e.g. by Zhou 

and Lucas [24]. In general, higher RH, i.e. higher moisture content (Table 3), corresponds to 



16 

 

higher level of plasticization. For illustration, the glass transition temperature, Tg, was 

determined employing Differential Scanning Calorimetry (DSC) on neat resin. It was found 

to be approximately 3 °C higher for specimens conditioned at RH = 22 % (at room 

temperature) than for specimens conditioned at RH = 76 %, which is an indicator for 

increasing level of plasticization. The effect of plasticization is similar to that of increasing 

temperature, i.e. the molecular mobility in the polymer is increased, and hence the maximum 

in tack is shifted to higher feed rates. The increase in maximum tack is likely related to an 

increased true contact area at a given compaction force, which may overcompensate a loss in 

resin cohesion resulting from plasticization. 

At a given set of test parameters, Dubois et al. [10] observed a decrease in measured tack 

with increasing RH in compression-to-tension tests. This may be a result of the maximum in 

tack moving to a higher separation rate (in analogy to the move to higher feed/peel rate 

observed here), which cannot be detected if test conditions are kept constant.  

The increase in feed rate at maximum tack implies that, at a given test temperature, the 

feed rate needs to be shifted to a higher value to obtain similar or higher tack for a specimen 

with higher moisture uptake than for a specimen with lower moisture uptake. In analogy to 

the proposal for out-time shifting, this could be described by introducing an additional shift 

factor. 

 

5.4 Effect of compaction force and peel roller type 

The effects of the force applied through the compaction roller and of the properties of the 

peel roller on prepreg-prepreg tack (N face on P face) were studied at a single temperature (T 

= 30 °C) and feed rate (r = 20 mm/min), selected as a combination near maximum tack. The 

compaction force was incremented in steps of 20 N in the range from 20 N to 160 N. The 

data in Fig. 7 indicate that, for both peel rollers used here, the measured tack force converges 
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to a limit value as the compaction force increases. A plausible empirical description of the 

dependence of the tack force, Ft, on the compaction force, Fc, is 

 ))/exp(1( *
cctt FFFF −−= ∞   , (5) 

where Ft∞ is the limit value of the tack force, and the constant Fc
* is a measure of the rate of 

change in tack force with increasing compaction force. Fitting equations of this type to the 

experimental data indicates that results obtained using different peel rollers converge to the 

same limit value, and that convergence is faster (i.e. Fc
* is smaller) for the compliant roller 

than for the stiff roller (Table 5). 

To explain these observations, the difference between the total prepreg area compressed 

under the peel roller, i.e. the apparent contact area between prepreg layers, and the true 

contact area between the layers, which is smaller than or equal to the total compressed area, is 

to be considered. The general behaviour shown in Fig. 7 for each peel roller is related to 

flattening of the prepreg surfaces in the compressed area when the compaction pressure is 

increased. As a result, the true contact area between the prepreg layers increases in size, 

implying that the number of bonds which can form between the layers increases. Hence, the 

tack force increases with increasing compaction pressure. At high compaction pressure, the 

true contact area does not change if the pressure is increased any further. The tack force 

converges to a limit value, Ft∞, which depends on the resin properties only. 

While it was not possible to quantify the true contact area experimentally for prepreg-

prepreg contacts, trends for the dependence of the true contact area on the applied 

compaction pressure were determined based on a method proposed by Helmus et al. [16]. 

Using the tack test fixture, prepreg specimens with a width of 25 mm were applied to (but not 

peeled from) glass slides at defined compaction force. Based on analysis of micrographs 

taken from underneath the glass slides, the true contact area, which appears darker than other 

areas, was determined. The tests were conducted at a temperature of 21 °C and a feed rate of 

3 mm/min (near maximum tack, see Table 1) using the stiff peel roller. Example data plotted 



18 

 

in Fig. 8 indicate that (for the N face) the increase in true contact area with increasing 

compaction pressure follows a similar relation as described in Eq. (5), albeit with different 

constants.  

Comparing results obtained using the two different rollers, deformation of the compliant 

roller implies that a given compaction force results in a larger apparent contact area (length of 

contact in feed direction) between the prepreg layers than for the stiff roller. Hence, the 

effective compaction pressure, which determines the true contact area, is smaller than for the 

stiff roller. On the other hand, the duration of compaction at a given feed rate is longer than 

for the stiff roller, i.e. there is more time for bonds to form in the true contact area between 

the layers. For the material characterised here, superposition of these effects results in a 

greater tack force at given compaction force when the compliant roller is used than when the 

stiff roller is used. As a result, convergence is faster for the compliant roller, i.e. the value of 

Fc
* is smaller. Because of the compliance of the prepreg layers, the total contact area depends 

on the compaction pressure even if the stiff peel roller is used. However, this dependence is 

weak compared to the dependence for the compliant roller. Any potential effect of the 

(unknown) local pressure distribution in the apparent contact area is not considered here. 

An increase in compaction force at given resin properties has a similar effect as an 

increase in molecular mobility at given compaction force. Both result in an increased true 

contact area, i.e. stronger adhesion, at a given feed rate. While only a single combination of T 

and r was studied here, it can be inferred that the feed rate at maximum tack increases with 

increasing Fc. 

In compression-to-tension tests reported in the literature, tack was generally found to 

increase with compaction pressure and duration of its application [4, 6, 10]. Gillanders et al. 

observed similar convergence behaviour as in Fig. 7 for pressure-sensitive adhesive tape [4], 

which they attributed to a strong dependence of tack on the true contact area. This 
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complements observations by Seferis and Meissonnier, who concluded that, at short contact 

time and at low pressure, tack is determined by adhesion, otherwise by cohesion [6]. 

 

5.5  Effect of ply orientation 

In aerospace applications, laminates are typically produced from UD prepreg tapes at 

different orientation of the individual layers. The effect of the inter-ply angle on prepreg-

prepreg tack was studied for the pairing N face on P face, at a single temperature (T = 30 °C) 

and feed rate (r = 50 mm/min), selected as a combination near maximum tack. For practical 

reasons, the top layer in prepreg-prepreg tack testing, i.e. the layer that is applied to and 

peeled from the layer bonded onto the steel substrate, always has to be oriented at 0° (fibres 

need to be continuous in this layer to prevent it from disintegrating during the peel test). On 

the other hand, the bottom prepreg layer can be bonded onto a steel substrate at any angle, α. 

Here, the orientation of the ply bonded onto the substrate relative to the ply being peeled was 

varied between 0° and 90° (incremented by 15°). 

The measured tack increases continuously with increasing inter-ply angle (Fig. 9). 

However, for inter-ply angles greater than 60°, adhesion between the bottom prepreg layer 

and the substrate failed, while there was still adhesion between both prepreg layers. For these 

cases, the measured (apparent) tack represents a lower bound of the real tack, since tack 

between prepreg layers was stronger than adhesion provided by the double-sided adhesive 

tape which failed. Tack measured at an inter-ply angle of 60° was found to be approximately 

33 % higher than tack for aligned plies (Table 6). For an inter-ply angle of 45°, which is 

particularly relevant since laminates frequently contain [0°, 45°, 90°] lay-up sequences, tack 

increased by 20 % compared to α = 0°. While tack at different inter-ply angles was 

characterised only for one combination of T and r, measured tack increases beyond the peak 

of the Gaussian curve at α = 0°, Ftmax = (22.41 ± 0.72) N. Hence, the observed increase in 
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tack with increasing inter-ply angle must be a result of increasing peak tack rather than 

movement along a Gaussian curve relative to a constant peak. 

A possible explanation could be a difference in true contact area between layers for 

different inter-ply angles. The total volume of air inclusions at the interface between the 

prepreg layers (between areas of true contact) would also depend on the inter-ply angle. 

According to a theory of tackiness proposed by Gay and Leibler [25], this would result in 

different levels of cavitation affecting tack during ply separation. Another possible 

explanation could be different effective thickness of the resin layer at the interface for 

different inter-ply angles, which would result in a different strain rate but also in a different 

feed rate at maximum tack. 

However, Seferis and Meissonnier [5] observed no significant effect of the inter-ply angle 

on measured tack in compression-to-tension tests (where the effects discussed above would 

also occur). Assuming that, in their results, the influence of the inter-ply angle was not 

obscured by other effects, this suggests that the dependence of tack on the inter-ply angle 

observed here could be specific to the continuous application-and-peel method. While the 

difference in observations is not fully understood at present, it can be speculated that the 

geometry of ply separation, which is different in peel than in tensile loading of parallel flat 

plies, results in different outcomes. 

 

6 Conclusions 

Employing a continuous test method with coupled application and peel stages, tack was 

measured for a UD prepreg tape at different feed rates and temperatures to explore the 

viscoelastic response of the material. Using parameters obtained in complementary rheometry 

on neat resin, tack master curves were produced by shifting data to a reference temperature 

applying TTS. It was found that the dependence of tack on the shifted feed rate can be 

approximated by Gaussian curves. The shape of the curves, which is specific to the 
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continuous application-and-peel test method, is a result of the competing effects of increasing 

cohesion within the resin and decreasing adhesion between resin and substrate with 

increasing feed rates. Maximum tack and feed rate at the maximum derived from fitted 

Gaussian curves can be used to quantitatively describe tack behaviour. 

For prepreg on a steel substrate, measured maximum tack and feed rate at the maximum 

were higher for the face of the prepreg originally covered with a backing paper than for the 

uncovered face, which was attributed to different resin distributions on both prepreg surfaces. 

As a result of different molecular interactions at prepreg-steel and prepreg–prepreg contact 

interfaces, maximum prepreg-prepreg tack is significantly higher than maximum prepreg-

steel tack, while the feed rate at the maximum is in the same order of magnitude. Virtually no 

tack was observed between FEP and prepreg, although there was evidence of adhesion at 

high measurement temperatures.  

With increasing out-time of specimens, maximum prepreg-prepreg tack decreases slightly, 

while the feed rate at maximum tack decreases. Conditioning specimens at increased levels of 

relative humidity results in an increase in both maximum prepreg-prepreg tack and feed rate 

at the maximum. Both observations are related to changes in molecular mobility in the resin, 

which decreases with increasing out-time, because of an increase in the degree of cure, and 

increases with increasing moisture uptake due to plasticization of the resin. 

Increasing the compaction force results in increasing prepreg-prepreg tack which 

converges to a limit value. The convergence is faster for a compliant peel roller than for a 

stiff peel roller. Both effects are related to increasing true contact area and duration of 

compression of the prepreg surfaces. Furthermore, it was found that increasing the inter-ply 

angle results in increasing maximum prepreg-prepreg tack. While this effect is not fully 

understood, it is thought to be related to the geometry of the peel test.  

Where applicable, observations were compared with results presented in the literature. 

Taking into account that literature data were obtained employing tests with separate 

application and tension or peel stages, they are generally consistent with the interpretation of 
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the tack phenomenon presented here. Importantly, it can be concluded that acquiring data at a 

single set of test parameters may lead to misinterpretation of the results. Since tack depends 

strongly on the temperature- and rate-dependent viscoelastic properties of the resin, 

measurement at a range of test parameters is required to fully explore tack behaviour. 

Preliminary manufacturing trials for aerospace components indicated that using the tack 

master curves produced here for selection of process parameters, in particular machine 

temperature and feed rate, to obtain appropriate tack values can indeed improve the prepreg 

lay-up performance. Even though the relation between measured tack values and formation of 

defects in AMP processes is not straightforward, this observation demonstrates the usefulness 

of the presented work for practical application. 
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Appendix 

During a tack test, the face of the prepreg that is in contact with the peel roller is covered 

with protective paper (an added layer if this is the N face) to prevent the material from 

sticking to the roller. The face of the prepreg that is in contact with the substrate is partially 

covered by a layer of protective paper (either part of the paper is removed from the P face or 

a layer is added on the N face), such that the specimen surface is exposed on a defined length 

(here: 80 mm). If prepreg-prepreg tack is tested, the face of the bottom layer (P face) in 

contact with the other layer is exposed on the same length to match the top layer. 

The additional paper layer separates the prepreg from the substrate during the first phase 

of the test. In this phase, the force for overcoming friction in the system and for bending of 

the prepreg (which is also determined by the viscoelastic resin properties) and of two layers 
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of protective paper is measured. Once the specimen has moved sufficiently far for the 

exposed part of the prepreg surface to be in contact with the substrate (second phase of the 

test), the measured force corresponds to the sum of the friction force in the system, the force 

for bending of the prepreg and one layer of protective film and the tack force. Hence, the tack 

force can be calculated from the difference of forces in phases 2 and 1, plus the force for 

bending of one layer of paper. Two examples of raw data acquired in tack tests are shown in 

Fig. A1, where two force levels corresponding to phases 1 and 2 can clearly be identified. 

The diagrams show some scatter in the recorded force, which is related to small-scale local 

variations in material properties. The dip in the measured force at the transition between the 

phases is a result of a discontinuity in total thickness where the separating layer of paper 

ends. The figure also shows that the characteristics of raw data for prepreg-steel tack and 

prepreg-prepreg tack are the same. The force in phase 2 is higher for prepreg-prepreg tack 

than for prepreg-steel tack. 

In an additional test, a single layer of backing paper is laid up on a steel substrate, and  the 

force for bending of the paper around the peel roller is measured. The average tack force, 〈Ft〉 

is calculated from the average forces in phases 1 and 2, 〈F1〉 and 〈F2〉, and the average force 

for bending of the backing paper, 〈Fb〉, according to  

 b12t FFFF +−=   . (A1) 

The standard deviation of the tack force, σt, is calculated from the standard deviations of the 

forces in phases 1 and 2, σ1 and σ2, and the standard deviation of the force for bending of the 

backing paper, σb, according to  

 2
b

2
1

2
2t σσσσ ++=   . (A2) 

This quantity is a measure of the local scatter in the measured force. For illustration, values 

corresponding to the data plotted in Fig. A1 are listed in Table A1. 
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Figure 1. Micrographs of prepreg surfaces for both material batches; images were focused on the filament 
surfaces; resin on the material surface is visible as white areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

Figure 2. Tack test fixture as proposed by Crossley et al. [14]. 
 
 
 
 

 
 

Figure 3. Prepreg-prepreg (P face on P face) tack force, Ft, acquired at different temperatures, T, and feed rates, 
r; average values and standard deviations are indicated; the lines interpolate between measured data points. 

 
 

 
 
 
 

A: prepreg (with backing paper)  
B: steel substrate 
C: guide roller 
D: peel roller 
E: compaction roller 
F: adjustable springs 
G: material clamp 
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Figure 4. Tack data for different surface combinations, acquired at different temperatures, T, and feed rates, r, 
shifted to the reference temperature T0 = 20 °C: tack force, Ft, as a function of the shifted feed rate, rs; average 

values and standard deviations are indicated; the lines indicate Gaussian curves according to Eq. (4); 
coefficients of determination, R2, are also indicated. 
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Figure 5. Prepreg-prepreg (N face on P face) tack data at different out-times, tout, acquired at different 
temperatures, T, and feed rates, r, shifted to the reference temperature T0 = 20 °C; tack force, Ft, as a function of 
the shifted feed rate, rs; average values and standard deviations are indicated; the lines indicate Gaussian curves 

according to Eq. (4); coefficients of determination, R2, are also indicated. 
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Figure 6. Prepreg-prepreg (N face on P face) tack data at different levels of relative humidity, RH, acquired at 
different temperatures, T, and feed rates, r, shifted to the reference temperature T0 = 20 °C: tack force, Ft, as a 

function of the shifted feed rate, rs; average values and standard deviations are indicated; the lines indicate 
Gaussian curves according to Eq. (4); coefficients of determination, R2, are also indicated. 
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Figure 7. Prepreg-prepreg (N face on P face) tack force, Ft, as a function of compaction force, Fc, at a 
temperature T = 30 °C and feed rate r = 20 mm/min; experimental data (average values and standard deviations) 

and fit curves according to Eq. (5). 
 
 
 
 
  

 
 

Figure 8. True contact area between prepreg and glass plate, At, expressed in terms of percentage of apparent 
contact area, Aa, as a function of compaction force, Fc (converted to a specimen width of 75 mm), at a 

temperature T = 21 °C and feed rate r = 3 mm/min; average values and standard deviations are given; the line 
indicates a fit in analogy to Eq. (5). 
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Figure 9. Prepreg-prepreg (N face on P face) tack force, Ft, as a function of inter-ply angle, α, at a temperature 
T = 30 °C and feed rate r = 50 mm/min; average values and standard deviations are indicated. 

 
 
 
 
 

 
 

 
 
Figure A1. Examples for the measured tensile force as a function of the cross-head displacement during a tack 

test; the specimen width was 75 mm, the compaction force 100 N. 
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Table 1. Tack data for different surface combinations, shifted to a reference temperature T0 = 20 °C: maximum 
tack force, Ftmax, shifted feed rate at maximum tack, rsmax, and width of curves, w, derived from Gaussian fit 

curves according to Eq. (4); average values and standard errors are given; coefficients of determination, R2, are 
also given. 

 

surface combination Ftmax / N rsmax / (mm/min) w R2 

prepreg P – steel 7.90 ± 0.36 7.14 ± 0.78 1.28 ± 0.07 0.930 

prepreg N – steel 4.09 ± 0.34 2.84 ± 0.63 1.34 ± 0.15 0.762 

prepreg P – prepreg P 20.18 ± 1.24 4.55 ± 0.60 1.14 ± 0.09 0.901 

prepreg N – prepreg P 22.41 ± 0.72 3.98 ± 0.27 1.03 ± 0.04 0.942 

 
 
 
 
 

Table 2. Prepreg-prepreg (N face on P face) tack data for different out-times, tout, shifted to a reference 
temperature T0 = 20 °C: maximum tack force, Ftmax, shifted feed rate at maximum tack, rsmax, and width of 

curves, w, derived from Gaussian fit curves according to Eq. (4); average values and standard errors are given; 
coefficients of determination, R2, are also given. 

 

tout / days Ftmax / N rsmax / (mm/min) w R2 

0 22.41 ± 0.72 3.98 ± 0.27 1.03 ± 0.04 0.942 

7 17.05 ± 1.30 0.78 ± 0.10 0.88 ± 0.10 0.885 

14 18.57 ± 1.10 0.22 ± 0.02 0.73 ± 0.06 0.951 

 
 
 
 
 
Table 3. Specimen mass, m, after conditioning at different relative humidity, RH, and change in specimen mass, 

∆m, compared to specimen after conditioning at RH = 33 %. 
 

RH m / mg ∆m / mg 

33 % 736.26 / 

43 % 736.71 0.45 

59 % 737.35 1.09 

 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Prepreg-prepreg (N face on P face) tack data for different target values of the relative humidity, RH, 
shifted to a reference temperature T0 = 20 °C: maximum tack force, Ftmax, shifted feed rate at maximum tack, 

rsmax, and width of curves, w, derived from Gaussian fit curves according to Eq. (4); average values and standard 
errors are given; coefficients of determination, R2, are also given. 

 

RH Ftmax / N rsmax / (mm/min) w R2 

33 % 13.90 ± 0.84 5.41 ± 0.66 1.09 ± 0.08 0.908 

43 % 13.62 ± 0.60 6.01 ± 0.54 1.10 ± 0.06 0.949 

59 % 17.40 ± 0.97 10.79 ± 1.17 1.06 ± 0.07 0.928 

 
 
 
 
 

Table 5. Constants, Ft∞ and Fc
*, in Eq. (5) for prepreg-prepreg (N face on P face) tack as a function of the 

compaction force obtained using different peel rollers at a temperature T = 30 °C and feed rate r = 20 mm/min; 
average values and standard errors are given; coefficients of determination, R2, are also given. 

 

roller Ft ∞ / N Fc
* / N R2 

compliant 23.17 ± 0.95 41.33 ± 5.54 0.972 

stiff 23.44 ± 3.37 71.68 ± 22.89 0.929 

 
 

 

 

 
Table 6. Relative increase in prepreg-prepreg (N face on P face) tack, ∆Ft/Ft(α = 0°), with increasing inter-ply 
angle, α, at a temperature T = 30 °C and feed rate r = 50 mm/min; + indicates tests where bottom prepreg layer 

detached from steel substrate. 
 

α  0° 15° 30° 45° 60° 75° 90° 

∆Ft/Ft(α = 0°) - 10 % 17 % 20 % 33 % 58 % + 67 % + 

 
 
 
 
 
Table A1. Average values (indicated by brackets) and standard deviations (σ) of the forces corresponding to the 
diagrams in Fig. A1; measured forces during phases 1 and 2 of the tack tests, F1 and F2, force for bending of one 

layer of backing paper, Fb, and resulting tack force, Ft. 
 

surface 
combination 〈F1〉 / N σ1 / N 〈F2〉 / N σ2 / N 〈Fb〉 / N σb / N 〈Ft〉 / N σt / N 

prepreg N – 
steel 

3.02 0.32 6.81 0.38 0.87 0.22 4.66 0.54 

prepreg N – 
prepreg P 

3.55 0.26 21.59 0.54 0.87 0.22 18.92 0.64 

 
 


